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Abstract 13 
 14 

Forecasting the output power of solar systems is required for the good operation of the power grid or 15 

for the optimal management of the energy fluxes occurring into the solar system. Before forecasting 16 

the solar systems output, it is essential to focus the prediction on the solar irradiance. The global solar 17 

radiation forecasting can be performed by several methods; the two big categories are the cloud 18 

imagery combined with physical models, and the machine learning models. In this context, the 19 

objective of this paper is to give an overview of forecasting methods of solar irradiation using machine 20 

learning approaches. Although, a lot of papers describes methodologies like neural networks or 21 

support vector regression, it will be shown that other methods (regression tree, random forest, gradient 22 

boosting and many others) begin to be used in this context of prediction. The performance ranking of 23 

such methods is complicated due to the diversity of the data set, time step, forecasting horizon, set up 24 

and performance indicators. Overall, the error of prediction is quite equivalent. To improve the 25 

prediction performance some authors proposed the use of hybrid models or to use an ensemble 26 

forecast approach.  27 

 28 

Keywords: Solar radiation forecasting, machine learning, artificial neural networks, support vector 29 

machines, regression.30 



2 
  

 31 

1. Introduction 32 

 33 

An electrical operator should ensure a precise balance between the electricity production and 34 

consumption at any moment. This is often very difficult to maintain with conventional and 35 

controllable energy production system, mainly in small or not interconnected (isolated) electrical grid 36 

(as found in islands). Many countries nowadays consider using renewable energy sources into their 37 

electricity grid. This creates even more problems as the resource (solar radiation, wind, etc.) is not 38 

steady. It is therefore very important to be able to predict the solar radiation effectively especially in 39 

case of high energy integration [1]. 40 

 41 

1.1. The necessity to predict solar radiation or solar production 42 

 43 

One of the most important challenge for the near future global energy supply will be the large 44 

integration of renewable energy sources (particularly non-predictable ones as wind and solar) into 45 

existing or future energy supply structure. An electrical operator should ensure a precise balance 46 

between the electricity production and consumption at any moment. As a matter of fact, the operator 47 

has often some difficulties to maintain this balance with conventional and controllable energy 48 

production system, mainly in small or not interconnected (isolated) electrical grid (as found in 49 

islands). The reliability of the electrical system then become dependent on the ability of the system to 50 

accommodate expected and unexpected changes (in production and consumption) and disturbances, 51 

while maintaining quality and continuity of service to the customers. Then, the energy supplier must 52 

manage the system with various temporal horizons (see Fig. 1). 53 

 54 

Figure 1. Prediction scale for energy management in an electrical network [2]  55 

 56 
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The integration of renewable energy into an electrical network intensifies the complexity of the grid 57 

management and the continuity of the production/consumption balance due to their intermittent and 58 

unpredictable nature [1, 2]. The intermittence and the non-controllable characteristics of the solar 59 

production bring a number of other problems such as voltage fluctuations, local power quality and 60 

stability issues [3, 4]. Thus forecasting the output power of solar systems is required for the effective 61 

operation of the power grid or for the optimal management of the energy fluxes occurring into the 62 

solar system [5]. It is also necessary for estimating the reserves, for scheduling the power system, for 63 

congestion management, for the optimal management of the storage with the stochastic production and 64 

for trading the produced power in the electricity market and finally to achieve a reduction of the costs 65 

of electricity production [1, 3, 6, 7]. Due to the substantial increase of solar power generation the 66 

prediction of solar yields becomes more and more important [8]. In order to avoid large variations in 67 

renewable electricity production it is necessary to include also the complete prediction of system 68 

operation with storage solutions. Various storage systems are being developed and they are a viable 69 

solution for absorbing the excess power and energy produced by such systems (and releasing it in peak 70 

consumption periods), for bringing very short fluctuations and for maintaining the continuity of the 71 

power quality. These storage options are usually classified into three categories: 72 

- Bulk energy storage or energy management storage media is used to decouple the timing of 73 

generation and consumption. 74 

- Distributed generation or bridging power - this method is used for peaks shaving - the storage 75 

is used for a few minutes to a few hours to assure the continuity of service during the 76 

energy sources modification. 77 

- The power quality storage with a time scale of about several seconds is used only to assure the 78 

continuity of the end use power quality. 79 

Table 1 shows these three categories and their technical specifications. As shown, every type of 80 

storage is used in different cases to solve different problems, with different time horizon and quantities 81 

of energy. 82 

Table 1. The three categories of storage and their technical specification 83 

Category 
Discharge 

power 
Discharge 

Time 
Stored Energy Representative Application 

Bulk energy 10-1000 MW 1-8 h 10-8000 MWh Load levelling, generation capacity 

Distributed generation 0.1-2 MW 0.5–4 h 50–8000 kWh Peak shaving, transmission deferral 

Power quality 0.1-2 MW 1–30 s 0.03–16.7 kWh End-use power quality/reliability 

 84 
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Table 1 shows that the electricity storage can be widely used in a lot of cases and applications as a 85 

function of the time of use and the power needs of the final user. Finally, it shows that the energy 86 

storage acts at various time levels and their appropriate management requires the knowledge of the 87 

power or energy produced by the solar system at various horizons: very short or short for power 88 

quality category to hourly or daily for bulk energy storages. Similarly, the electrical operator needs to 89 

know the future production (Figure 1) at various time horizons from one to three days, for preparing 90 

the production system and to some hours or minutes for planning the start-up of power plants (Table 91 

2). Starting a power plant needs between 5 min for a hydraulic one to 40 hours for a nuclear one. 92 

Moreover, the rise in power of the electrical plants is sometimes low, thus for an effective balance 93 

between production and consumption an increase of the power or a starting of a new production needs 94 

to be anticipated sometimes well in advance. 95 

Table 2. Characteristics of electricity production plants [9] 96 

Type of electrical 
generator 

Power size 
 

Minimum 
power capacity 

Rise speed in 
power per min 

Starting time 
 

 MW percentage of 
peak power 

percentage of 
peak power  

hours 

Nuclear Power Plant 400–1300 per reactor 20% 1% 40 h (cold)-18 h 
(hot) 

Steam thermal plant 200–800 per turbine 50% 0.5%-5% 11-20 h (cold)-5 h 
(hot) 

Fossil-fired power plants 1–200 50% - 80% 10% 10 min-1 h 
Combined-cycle plant 100–400 50% 7% 1-4 h 
Hydro power plant 50–1300 30% 80%-100% 5 min 
Combustion turbine 
(light fuel) 

25 30% 30% 15-20 min 

Internal combustion 
engine 

20 65% 20% 45-60 min 

 97 

Furthermore, the relevant horizons of forecast can and must range from 5 minutes to several days as it 98 

was confirmed by Diagne et al. [6]. Elliston and MacGill [10] outlined the reasons to predict solar 99 

radiation for various solar systems (PV, thermal, concentrating solar thermal plant, etc.) insisting on 100 

the forecasting horizon. It therefore seems apparent that the time-step of the predicted data may vary 101 

depending on the objectives and the forecasting horizon. All these reasons show the importance of 102 

forecasting, whether in production or in consumption of energy. The need for forecasting lead to the 103 

necessity to use effective forecasting models. In the next section the various available forecasting 104 

methodologies are presented. 105 

 106 

1.2. Available forecasting methodologies 107 

 108 
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The solar power forecasting can be performed by several methods; the two big categories are the cloud 109 

imagery combined with physical models, and the machine learning models. The choice for the method 110 

to be used depends mainly on the prediction horizon; actually all the models have not the same 111 

accuracy in terms of the horizon used. Various approaches exist to forecast solar irradiance depending 112 

on the target forecasting time. The literature classifies these methods in two classes of techniques: 113 

- Extrapolation and statistical processes using satellite images or measurements on the ground 114 

level and sky images are generally suitable for short-term forecasts up to six hours. This 115 

class can be divided in two sub-classes, in the very short time domain called “Now-116 

casting’’ (0–3 h), the forecast has to be based on extrapolations of real-time measurements 117 

[5]; in the Short-Term Forecasting (3–6 h), Numerical Weather Prediction (NWP) models 118 

are coupled with post-processing modules in combination with real-time measurements or 119 

satellite data [5, 11]. 120 

- NWP models able to forecast up to two days ahead or beyond [12, 13] (up to 6 days ahead 121 

[13]). These NWP models are sometimes combined with post-processing modules and 122 

satellite information are often used [2]. 123 

Figures 2a and 2b [6, 14] summarize the existing methods versus the forecasting horizon, the objective 124 

and the time step. 125 

 

 Intra-hour Intra-day Day ahead 

Forecasting horizon 15 min to 2 h 1 h to 6 h 1 day to 3 day 

Granularity-Time step 30 s to 5 min hourly hourly 

Related to 
Ramping events, 
variability related 

to operations 

Load following 
forecasting 

Unit 
commitment, 
transmission 

scheduling, day 
ahead markets 

Forecasting Models Total Sky Imager and/or time series 

Satellite Imagery and/or NWP  

Figure 2 a) Forecasting error versus forecasting models (left) [6,14]. b) Relation between forecasting 126 

horizons, forecasting models and the related activities (right) [6, 14] 127 

The NWP models predict the probability of local cloud formation and then predict indirectly the 128 

transmitted radiation using a dynamic atmosphere model. The extrapolation or statistical models 129 

analyse historical time series of global irradiation, from satellite remote sensing [15] or ground 130 

measurements [16] by estimating the motion of clouds and project their impact in the future [6, 13, 131 

17]. Hybrid methods can improve some aspects of all of these methods [6, 14]. The statistical 132 

approach allows to forecast hourly solar irradiation (or at a lower time step) and NWP models use 133 

explanatory variables (mainly cloud motion and direction derived from atmosphere) to predict global 134 

irradiation N-steps ahead [15]. Very good overviews of the forecasting methods, with their limitations 135 

and accuracy can be found in [1, 5, 6, 10, 12, 14, 18]. Benchmarking studies were performed to assess 136 
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the accuracy of irradiance forecasts and compare different approaches of forecasting [8, 13, 17, 19–137 

21]. Moreover, the accuracy evaluation parameters are often different; some parameters such as 138 

correlation coefficient and root mean square error are often used, but not always adapted to compare 139 

the model performance. Thus the time period used for evaluating the accuracy varies widely. Some of 140 

them analysed the model accuracy over a period of one or several years, whereas some others over a 141 

period of some weeks introducing a potential seasonal bias. In these conditions, it is not easy to make 142 

comparisons and the accuracy of the results produced, as shown in this paper, must be carefully 143 

evaluated in selecting the right method to use. As part of COST Action ES1002. (European 144 

Cooperation in Science and Technology) [22] on Weather Intelligence for Renewable Energies 145 

(WIRE) a literature review on the forecasting accuracy applied to renewable energy systems mainly 146 

solar and wind is carried out. In this paper an overview on the various methodologies available for 147 

solar radiation prediction based on machine learning is presented. A lot of review papers are available, 148 

but it is very rare to find a paper which is totally dedicated to the machine learning methods and that 149 

some recent prediction models like random forest, boosting or regression tree be integrated.  In the 150 

next section the different methodologies used in the literature to predict global radiation and the 151 

parameters used for estimating the model performances are presented. 152 

 153 

2. Machine learning methods 154 

 155 

Machine learning is a subfield of computer science and it is classified as an artificial intelligence 156 

method. It can be used in several domains and the advantage of this method is that a model can solve 157 

problems which are impossible to be represented by explicit algorithms. In [23] the reader can find a 158 

detailed review of some machine learning and deterministic methods for solar forecasting. The 159 

machine learning models find relations between inputs and outputs even if the representation is 160 

impossible; this characteristic allow the use of machine learning models in many cases, for example in 161 

pattern recognition, classification problems, spam filtering, and also in data mining and forecasting 162 

problems. The classification and the data mining are particularly interesting in this domain because 163 

one has to work with big datasets and the task of preprocessing and data preparation can be undertaken 164 

by the machine learning models. After this step, the machine learning models can be used in 165 

forecasting problems. In global horizontal irradiance forecasting the models can be used in three 166 

different ways [24]: 167 

- structural models which are based on other meteorological and geographical parameters; 168 

- time-series models which only consider the historically observed data of solar irradiance as 169 

input features (endogenous forecasting); 170 
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- hybrid models which consider both, solar irradiance and other variables as exogenous 171 

variables (exogenous forecasting). 172 

As already mentioned machine learning is a branch of artificial intelligence. It concerns the 173 

construction and study of systems that can learn from data sets, giving computers the ability to learn 174 

without being explicitly programmed. In the predictive learning problems, the system consists of a 175 

random “output” or “response” variable y and a set of random “input” or “explanatory” variables x = 176 

. Using a “training” sample  of known (y, x)-values, the goal is to obtain an 177 

estimate or approximation , of the function  mapping x to y, that minimizes the expected 178 

value of some specified loss function  over the joint distribution of all (y, x)-values:  179 

                       (1) 180 

The frequently employed loss functions include squared-error  and absolute error 181 

 for regression and negative binomial log-likelihood for classification. A common 182 

procedure is to restrict  to be a member of a parameterized class of functions F(x; P), where P 183 

= {P1, P2, ...} is a finite set of parameters whose joint values identify individual class members. 184 

Usually all the methods dedicated to the machine learning, especially the supervised cases, are 185 

confronted to bias-variance tradeoff (see Figure 3). This is the problem of trying to minimize two 186 

sources of error simultaneously which prevent supervised learning algorithms from generalizing 187 

outside their training set: 188 

- The bias is the deviation (error) from erroneous assumptions made in the learning algorithm. 189 

High values of bias can cause an algorithm to lose its ability to establish relations between 190 

actual and target outputs (under-fitting). 191 

- The variance is the error created from actually caprturing small fluctuations in the training set. 192 

It should be noted that high variance can cause overfitting which results in modeling the 193 

random noise in the training dataset, rather than the intended output. 194 

The breakdown of bias-variance relationship is a way of investigating the expected generalization 195 

error of a learning algorithm for a particular problem that is the sum of three terms, the bias, variance, 196 

and irreducible error, which result from noise in the problem itself. 197 
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 198 

Figure 3: Bias variance tradeoff 199 

 200 

In this part we present the different machine learning models used in forecasting, initially the models 201 

for classification and data preparation, secondly the supervised learning models, thirdly the 202 

unsupervised learning models and finally the ensemble learning models. 203 

 204 

2.1. Classification and data preparation 205 

 206 

Machine learning algorithms learn from data. It is therefore critical to choose the right data and 207 

prepare them properly to enable the problem to be solved effectively. 208 

2.1.1.  Discriminant analysis and Principal Component Analysis (PCA) 209 

 210 

The principal component analysis (PCA) is a statistical method which uses an orthogonal 211 

transformation to transform a set of observations of probably correlated variables into a set of values 212 

of linearly uncorrelated variables which are called principal components [25]. The number of principal 213 

components created in the process, is lower or equal to the number of original variables. Such 214 

transformation is defined in such a way so as the first principal component has the largest variance 215 

possible, i.e., to account for the maximum variability in the data, and each subsequent component to 216 

have the highest variance possible under the restriction that it is orthogonal to the previous 217 

components. As a result, the resulting vectors form an uncorrelated orthogonal basis set. It should be 218 
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noted that the principal components are orthogonal as they are the eigenvectors of the covariance 219 

matrix, which is symmetric. Moreover, PCA is sensitive to the relative scaling of the original variables 220 

[26]. 221 

 222 

2.1.2.  Naive Bayes classification and Bayesian networks 223 

 224 

In machine learning, naive Bayes classifiers are a family of simple probabilistic classifiers based on 225 

applying Bayes' theorem with strong (naive) independence assumptions between the features. Naive 226 

Bayes classifiers are highly scalable, requiring a number of parameters proportional to the number of 227 

variables (features/predictors) in a learning problem. Maximum-likelihood training can be done by 228 

evaluating a closed-form expression, which takes linear time, rather than by expensive iterative 229 

approximation as used for many other types of classifiers [27]. A Bayesian network, also called Bayes 230 

network, Bayesian model, belief network or probabilistic directed acyclic graphical model is a 231 

probabilistic graphical model, which is a type of statistical model that represents a set of random 232 

variables and their conditional dependencies via a directed acyclic graph (DAG). 233 

 234 

2.1.3.  Data mining approach 235 

 236 

A data mining consists of the discovery of interesting, unexpected or valuable structure in large data 237 

sets that can be called with the slogan Big Data [28]. In other words, data mining consists of extracting 238 

the most important information from a very large data set. Indeed, the classical statistical inference has 239 

been developed for processing small samples. In the presence of very large databases, all the standard 240 

statistical indexes become significant and thus interesting (e.g. for 1 million of data, the significance 241 

threshold of correlation coefficient is very low reaching 0.002, …). Additionally, in data mining, data 242 

collected are analyzed for highlighting the main information before to use them in the forecasting 243 

models. Rather than opposing data mining and statistics, it is best to assume that data mining is the 244 

branch of statistics devoted to the exploitation of large databases. The techniques used are from 245 

different fields depending on classical statistics and artificial intelligence [29]. This last notion was 246 

defined by “The construction of computer programs that engage in tasks that are, for now, more 247 

satisfactorily performed by humans because they require high-level mental processes such as 248 

perceptual learning organization memory and critical thinking”. There is not really a consensus of 249 

this definition, and many other similar ones are available.  250 

 251 
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2.2. Supervised learning 252 

 253 

In supervised learning, the computer is presented with example inputs and their desired outputs, given 254 

by a "teacher", and the goal is to learn a general rule that maps inputs to outputs[23]. These methods 255 

need an “expert” intervention. The training data comprise of a set of training examples. In supervised 256 

learning, each pattern is a pair which includes an input object and a desired output value. The function 257 

of the supervised learning algorithm is to analyze the training data and produce an inferred function. 258 

 259 

2.2.1.  Linear Regression 260 

 261 

Early attempts to study time series, particularly in the 19th century, were generally characterized by 262 

the idea of a deterministic world. It was the major contribution of Yule (1927) which launched the idea 263 

of stochasticity in time series by assuming that every time series can be regarded as the realization of a 264 

stochastic process. Based on this simple idea, a number of time series methods have been developed 265 

since that time. Workers such as Slutsky, Walker, Yaglom, and Yule first formulated the concept of 266 

autoregressive (AR) and moving average (MA) models [30]. Wold’s decomposition theorem [31] led 267 

to the formulation and solution of the linear forecasting problem of Kolmogorov in 1941. Since then, a 268 

considerable amount of literature is published in the area of time series, dealing with parameter 269 

estimation, identification, model checking and forecasting; see, for example ref. [32] for an early 270 

survey.  271 

 272 

2.2.2.  Generalized Linear Models 273 

 274 

Generalized linear model (GLM) in statistics, is a flexible generalization of ordinary linear regression 275 

which allows for response variables that have error distribution models other than a normal 276 

distribution. GLM generalizes linear regression by permitting the linear model to be related to the 277 

response variable through a link function and by considering the magnitude of the variance of each 278 

measurement to be a function of its predicted value[33]. Some studies improve the regression quality 279 

using a coupling with other predictors like Kalman filter [34]. 280 

 281 

2.2.3.  Nonlinear Regression 282 

 283 
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Artificial Neural Networks (ANN)  are  being  increasingly  used  for  nonlinear  regression  and  284 

classification  problems  in  meteorology due  to  their  usefulness  in  data  analysis  and  285 

prediction[35]. The use of ANN is particularly predominant in the realm of time series forecasting 286 

with nonlinear methods. Actually the availability of historical data on the meteorological utility 287 

databases and the fact that ANNs are data driven methods capable of performing a non-linear mapping 288 

between sets of input and output variables makes this modelling software tool very attractive.  289 

Artificial neural network with d inputs, m hidden neurons and a single linear output unit defines a non-290 

linear parameterized mapping from an input vector x to an output y is given by (unbiased form): 291 

       (2) 292 

Each of the m hidden units are usually related to the tangent hyperbolic function 293 

The parameter vector governs the non-linear mapping 294 

and is estimated during a phase called the training or learning phase. During this phase, the ANN is 295 

trained using the dataset  that contains a set of n input and output examples. The second phase, 296 

called the generalization phase, consists of evaluating, on the test dataset , the ability of the ANN to 297 

generalize, i.e., to give correct outputs when it is confronted with examples that were not seen during 298 

the training phase. 299 

For solar radiation the relationship between the output  and the inputs 300 

 has the form given by:  301 

      (3) 302 

As shown by the preceding equation, the ANN model is equivalent to a nonlinear autoregressive (AR) 303 

model for time series forecasting problems. In a similar manner as for the AR model, the number of 304 

past input values p can be calculated with the auto-mutual information factor [36]. 305 

Careful attention must be put on the building of the model, as a too complex ANN will easily overfit 306 

the training data. The ANN complexity is in relation with the number of hidden units or conversely the 307 

dimension of the vector w. Several techniques like pruning or Bayesian regularization can be 308 

employed to control the ANN complexity. The Levenberg-Marquardt (approximation to the Newton’s 309 

method) learning algorithm with a max fail parameter before stopping training is often used to 310 

estimate the ANN model’s parameters. The max fail parameter corresponds to a regularization tool 311 

limiting the learning steps after a characteristic number of prediction failures and consequently is a 312 

means to control the model complexity [18,37]. Note that hybrid methods such as master optimization 313 

by conjugate gradients for selecting ANN topology allow ANNs to perform at their maximum 314 
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capacity. A lot of studies show the impact of the coupling between ANN and other tools like for 315 

example Kalman Filter or the fuzzy logic, which verify that often the gain is very interesting [38] 316 

 317 

2.2.4.  Support Vector Machines / Suppor Vector Regression 318 

 319 

Support vector machine is another kernel based machine learning technique used in classification tasks 320 

and regression problems introduced by Vapnik in 1986 [39]. Support vector regression (SVR) is based 321 

on the application of support vector machines to regression problems [18]. This method has been 322 

successfully applied to time series forecasting tasks. In a similar manner as for the Gaussian Processes 323 

(GPs), the prediction calculated by a SVR machine for an input test case  is given by: 324 

           (4) 325 

With the commonly used RBF kernel defined by: 326 

        (5) 327 

The parameter b (or bias parameter) is derived from the preceding equation and some specific 328 

conditions. In the case of SVR, the coefficients  are related to the difference of two Lagrange 329 

multipliers, which are the solutions of a quadratic programming (QP) problem. Unlike ANNs, which 330 

are confronted with the problem of local minimum, here the problem is strictly convex and the QP 331 

problem has a unique solution. In addition, it must be stressed (that unlike GPs), not all the training 332 

patterns participate to the preceding relationship. Indeed, a convenient choice of a cost function 333 

(Vapnik’s insentive function) in the QP problem allows obtaining a sparse solution. The latter 334 

means that only some of the coefficients  will be nonzero. The examples that come with non-335 

vanishing coefficients are called Support Vectors. 336 

One way to use the SVR in prediction problem is related to the fact that given the training dataset 337 

and a test input vector , the forecasted clear sky index can be computed for a 338 

specific horizon, h, like: 339 

       (6) 340 

 341 



13 
  

2.2.5.  Decision tree learning (Breiman bagging) 342 

 343 

The basic idea is very simple. A response or class Y from inputs X1, X2,…., Xp is required to be 344 

predicted. This is done by growing a binary tree. At each node in the tree, a test to one of the inputs, 345 

say Xi is applied. Depending on the outcome of the test, either the left or the right sub-branch of the 346 

tree is selected. Eventually a leaf node is reached, where a prediction is made. This prediction 347 

aggregates or averages all the training data points which reach that leaf. A model is obtained by using 348 

each of the independent variables. For each of the individual variables, mean squared error is used to 349 

determine the best split. The maximum number of features to be considered at each split is set to the 350 

total number of features [40–42].  351 

 352 

2.2.6.  Nearest neighbor 353 

 354 

Nearest neighbor neural network (k-NN) is a type of instance-based learning, where a function is only 355 

approximated locally and all computation is delayed until classification [37]. The k-NN algorithm is 356 

one of the simplest machine learning algorithms. For both classification and regression, it can be 357 

useful to assign a weight to the contributions of the neighbors, so that the nearest neighbors contribute 358 

more to the average than the distant ones. For example, in a common weighting arrangement, each 359 

neighbor is given a weight of 1/d, where d is the distance to the neighbor [43]. 360 

 361 

2.2.7.  Markov chain 362 

 363 

In forecasting domain, some authors have tried to use the so-called Markov processes, specifically the 364 

Markov chains. A Markov process is a stochastic process with the Markov property, which means that 365 

given the present state, future states are independent of the past states[44]. Expressed differently, the 366 

description of the present state fully captures all the information that could affect the future evolution 367 

of the process. In this, future states are reached through a probabilistic process instead of a 368 

deterministic one. The proper use of these processes needs to calculate initially the matrix of transition 369 

states. The transition probability of state i to the state j is defined by pi,j. The family of these numbers 370 

is called the transition matrix of the Markov chain R [27]. 371 

      372 
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2.3. Unsupervised learning 373 

 374 

In contrary with supervised learning model, an unsupervised learning model does not need an “expert” 375 

intervention and the model is able to find hidden structure in its inputs without knowledge of outputs 376 

[45]. Unsupervised learning is similar to the problem of density estimation in statistics. Unsupervised 377 

learning however, also incorporates many other techniques that seek to summarize and explain the key 378 

features of the data. Many methods normally employed in unsupervised learning are based on data 379 

mining methods used to pre-process data. 380 

 381 

2.3.1.  k-Means and k-Methods Clustering 382 

 383 

k-means clustering is a method of vector quantization, originally derived from signal processing, 384 

which is popular for cluster analysis in data mining. k-means clustering aims to partition n 385 

observations into k clusters in which each observation belongs to the cluster with the nearest mean, 386 

serving as a prototype of the cluster. k-Means algorithms are focused on extracting useful information 387 

from the data with the purpose of modelling the time series behaviour and find patterns of the input 388 

space by clustering the data. Furthermore, nonlinear autoregressive (NAR) neural networks are 389 

powerful computational models for modelling and forecasting nonlinear time series [46]. A lot of 390 

methods of clustering are available; the interested reader can see [47] for more information.  391 

 392 

2.3.2.  Hierarchical Clustering 393 

 394 

In data mining and statistics, hierarchical clustering (also called hierarchical cluster analysis) is a 395 

method of cluster analysis which seeks to build a hierarchy of clusters. Hierarchical clustering creates 396 

a hierarchy of clusters which can be represented in a tree structure called “dendrogram” which 397 

includes both roots and leaves. The root of the tree consists of a single cluster which contains all 398 

observations, whereas the leaves correspond to individual observations. Algorithms for hierarchical 399 

clustering are generally either agglomerative, in which the process starts from the leaves and 400 

successively merges clusters together; or divisive, in which the process starts from the root and 401 

recursively splits the clusters [48]. Any function which does not have a negative value can be used as a 402 

measure of similarity between pairs of observations. The choice of which clusters to merge or split, is 403 

determined by a linkage criterion that is a function of the pairwise distances between observations. It 404 

should be noted that cutting the tree at a given height will give a clustering at a selected precision. 405 



15 
  

 406 

2.3.3.  Gaussian Mixture Models 407 

 408 

Gaussian Processes (GPs) are a relatively recent development in non-linear modelling [49]. A GP is a 409 

generalization of a multivariate Gaussian distribution to infinitely many variables. A multivariate 410 

Gaussian distribution d is fully specified by a mean vector μ and covariance matrix Σ, e.g. . 411 

The key assumption in GP modelling is that the data  can be represented as a sample from a 412 

multivariate Gaussian distribution e.g. the observations . In order to better 413 

introduce GPs, the case is often restricted to one scalar input variable . As the data are often noisy 414 

usually from measurement errors, each observation y can be thought of as an underlying function  415 

with added independent Gaussian noise with variance , i.e.,  . As a GP is an 416 

extension of a multivariate Gaussian distribution, it is fully specified by a mean function  and a 417 

covariance function . Expressed in a different way, the function  can be modelled by 418 

a GP   . The setting of a covariance function permits to relate one 419 

observation  to another one . A popular choice of covariance function is the squared exponential 420 

As predictions are usually made using noisy measurements, the 421 

covariance between two observations can be stated as 422 

,  is the Kronecker delta.  and l 423 

are called hyperparameters of the covariance function and they control the model complexity and can 424 

be learned (or optimized) from the training data at hand [49]. For instance, in prediction studies, given 425 

the training database , the vector of forecasted irradiation for horizon h for new test 426 

inputs    is given by the mean of the predictive Gaussian distribution predictions. 427 

 428 

2.3.4.  Cluster Evaluation 429 

 430 

Typical objective functions in clustering formalize the goal of attaining high intra-cluster similarity 431 

and low inter-cluster similarity [50]. This is an internal criterion for the quality of a clustering. Good 432 

scores on an internal criterion do not necessarily mean a good effectiveness in an application. An 433 
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alternative to internal criteria is the direct evaluation of the application of interest. For search result 434 

clustering, the amount of the time a user is required to find an answer with different clustering 435 

algorithms may be required. This is the most direct evaluation, but it is time consuming, especially if 436 

large number of studies are necessary. 437 

 438 

2.4. Ensemble learning 439 

 440 

The basic concept of ensemble learning is to train multiple base learners as ensemble members and 441 

combine their predictions into a single output that should have better performance on average than any 442 

other ensemble member with uncorrelated error on the target data sets [51]. Supervised learning 443 

algorithms are usually described as performing the task of searching through a hypothesis space to 444 

find a suitable hypothesis that can perform good predictions for a particular problem. Even if the 445 

hypothesis space contains hypotheses that are very well-matched for a particular problem, it may be 446 

very difficult to find which one is the best. Ensembles combine multiple hypotheses to create a better 447 

hypothesis. The term ensemble is usually used for methods that generate multiple hypotheses using the 448 

same base learner. Fast algorithms such as decision trees are usually used with ensembles, although 449 

slower algorithms can also benefit from ensemble techniques. Evaluating the prediction accuracy of an 450 

ensemble typically requires more computation time than evaluating the prediction accuracy of a single 451 

model, so ensembles may be considered as a way to compensate for poor learning algorithms by 452 

performing much more computation. The general term of multiple classifier systems covers also 453 

hybridization of hypotheses that are not induced by the same base learner. The interested reader can 454 

see [52] for more details about ensemble learning. 455 

 456 

2.4.1.  Boosting 457 

 458 

An ensemble model uses decision trees as weak learners and builds the model in a stage-wise manner 459 

by optimizing a loss function [34, 35]. Boosting emerged as a way of combining many weak 460 

classifiers to produce a powerful “committee”. It is an iterative process that gives more and more 461 

importance to bad classification. Simple strategy results in dramatic improvements in classification 462 

performance. To do so, a boosting autoregression procedure is applied at each horizon on the residuals 463 

from the recursive linear forecasts using a so-called weak learner, which is a learner with large bias 464 

relative to variance. 465 
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2.4.2.  Bagging 466 

 467 

Bootstrap aggregating, also called bagging used in statistical classification and regression, is a 468 

machine learning ensemble meta-algorithm designed to improve the stability and accuracy of machine 469 

learning algorithms. The algorithm also reduces variance and helps to prevent overfitting. Although it 470 

is generally applied to decision tree methods, it can be used with any type of learning method. 471 

Bagging is a special case of the model averaging approach. Bagging predictors is generally used to 472 

generate multiple versions of a predictor and using them to get an aggregated predictor. The 473 

aggregation averages all the versions when predicting a numerical result and does a plurality vote to 474 

predict a class. The multiple versions are formed by making bootstrap replicates of the learning set and 475 

using them as new learning sets [55].  476 

 477 

2.4.3.  Random Subspace 478 

 479 

The machine learning tool that is used in the proposed methodology is based on Random Forests, 480 

which consists of a collection, or ensemble of a multitude of decision trees, each one built from a 481 

sample drawn with replacement (a bootstrap sample) from a training set, is the group of outputs. 482 

Furthermore, only a random subset of variables is used when splitting a node during the construction 483 

of a tree. As a consequence, the final nodes (or leafs), may contain one or several observations. For 484 

regression problems, each tree is capable of producing a response when presented with a set of 485 

predictors, being the conditional mean of the observations present on the resulting leaf. The 486 

conditional mean is typically approximated by a weighted mean. As a result of the random 487 

construction of the trees, the bias of the forest generally slightly increases with respect to the bias of a 488 

single non-random tree but, due to the averaging its variance decreases, frequently more than 489 

compensating for the increase in bias, hence yielding an overall better model. Finally, the responses of 490 

all trees are also averaged to obtain a single response variable for the model, and here as well a 491 

weighted mean is used [56]. Substantial improvements in classification accuracy were obtained from 492 

growing an ensemble of trees and letting them vote for the most popular class. To grow these 493 

ensembles, often random vectors are generated which govern the growth of each tree in the ensemble. 494 

One of the first examples used is bagging, in which to grow each tree a random selection (without 495 

replacement) is made from the examples contained in the training set [57–60].  496 

 497 
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2.4.4.  Predictors ensemble 498 

 499 

Current practice suggests that forecasts should be composed either by a number of simple- say 500 

“conventional” forecasts- or produce a simple forecast from other simple forecasts (not only point 501 

forecasts, but also probabilistic). This leads to gains in performance, relative to the contributing 502 

forecasts. In the case of statistical models, realizations coming from the same technology (for example 503 

the same neural network architecture) trained multiple times, or using different samples of the dataset; 504 

or different technologies. Once “first stage forecasts” are available, different combination approaches 505 

are possible. The simplest approach is averaging of results given by different methods. A more general 506 

approach assigns a weight to each of the contributing methods, for each time horizon, depending on 507 

different criteria and with different weighting policies. Simple forecasts can be seen as different 508 

perceptions of the same true state. In this way, approaches of imperfect sensor data fusion should also 509 

be valid to perform a combination of forecasts. Ensemble-based artificial neural networks and other 510 

machine learning technics have been used in a number of studies in global radiation modeling and 511 

provided better performance and generalization capability compared to conventional regression 512 

models [28, 42]. 513 

 514 

3. Evaluation of model accuracy 515 

 516 

Evaluation, generally, measures how good something is. This evaluation is used at various steps of the 517 

model development as for example during the evaluation of the forecasting model itself (during the 518 

training of a statistical model for example), for judging the improvement of the model after some 519 

modifications and for comparing various models. As previously mentioned, this performance 520 

comparison is not easy for various reasons such as different forecasted time horizons, various time 521 

scale of the predicted data and variability of the meteorological conditions from one site to another 522 

one. It works by comparing the forecasted outputs (or predicted time series) with observed data y 523 

(or observed or measured time series) which are also measured data themselves linked to an error (or 524 

precision) of a measure.  525 

Graphic tools are available for estimating the adequacy of the model with the experimental 526 

measurements such as: 527 

- Time series of predicted irradiance in comparison with measured irradiance which allows to 528 

visualize easily the forecast quality. In Fig. 4a, as an example, a high forecast accuracy in 529 

clear-sky situations and a low one in partly cloudy situations can be seen. 530 
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- Scatter plots of predicted over measured irradiance (see an example in Fig. 4b) which can 531 

reveal systematic bias and deviations depending on the irradiance conditions and show the 532 

range of deviations that are related to the forecasts.  533 

- Receiver Operating Characteristic (ROC) curves which compare the rates of true positives and 534 

false positive.  535 

 536 

 537 

Figure 4: a) Time series of predicted and measured global irradiance for 2008 in Ajaccio (France); b) 538 

Scatter plot of predicted vs. measured global irradiance in Ajaccio (France); c) Example of ROC curve 539 

(an ideal ROC curve is near the upper left corner). 540 

No standard evaluation measures are accepted, which makes the comparison of the forecasting 541 

methods difficult. Sperati et al. [62] presented a benchmarking exercise within the framework of the 542 

European Actions Weather Intelligence for Renewable Energies (WIRE) with the purpose of 543 

evaluating the performance of state of the art models for short term renewable energy forecasting. This 544 

study is a very good example of reliability parameter utilization. They concluded that: “More work 545 

using more test cases, data and models needs to be performed in order to achieve a global overview of 546 

all possible situations. Test cases located all over Europe, the US and other relevant countries should 547 

be considered, in an effort to represent most of the possible meteorological conditions”. This paper 548 

illustrates very well the difficulties of performance comparisons. 549 

The usually used statistics include the following: 550 

a) 
b) 

c) 
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The mean bias error (MBE) represents the mean bias of the forecasting: 551 
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with  being the forecasted outputs (or predicted time series), y the observed data (or observed or 553 

measured time series) and N the number of observations. The forecasting will under-estimate or over-554 

estimate the observations. Thus, MBE is not a good indicator for the relatability of a model because 555 

the errors compensate each other but it allows to see how much it overestimates or underestimates.  556 

The mean absolute error (MAE) is appropriate for applications with linear cost functions, i.e., where 557 

the costs resulting from a poor forecast are proportional to the forecast error: 558 
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                    (8) 559 

The mean square error (MSE) uses the squared of the difference between observed and predicted 560 

values. This index penalizes the highest gaps: 561 
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        (9) 562 

MSE is generally the parameter which is minimized by the training algorithm.  563 

The root mean square error (RMSE) is more sensitive to big forecast errors, and hence is suitable for 564 

applications where small errors are more tolerable and larger errors cause disproportionately high 565 

costs, as for example in the case of utility applications [22]. It is probably the reliability factor that is 566 

most appreciated and used:  567 
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                    (10) 568 

The mean absolute percentage error (MAPE) is close to the MAE but each gap between observed and 569 

predicted data is divided by the observed data in order to consider the relative gap. 570 
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This index has a disadvantage that it is unstable when y(i) is near zero and it cannot be defined for 572 

y(i)=0. 573 
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Often, these errors are normalized particularly for the RMSE; as reference the mean value of 574 

irradiation is generally used but other definitions can be found:  575 
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        (12) 576 

With  being the mean value of y. Other indices exist and can be used as the correlation coefficient R 577 

(Pearson Coefficient), or the index of agreement (d) which are normalized between 0 and 1.  578 

As the forecast accuracy strongly depends on the location and time period used for evaluation and on 579 

other factors, it is difficult to evaluate the quality of a forecast from accuracy metrics alone. Then, it is 580 

best to compare the accuracy of different forecasts against a common set of test data [63]. “Trivial” 581 

forecast methods can be used as a reference [22], the most common one is the persistence model 582 

(“things stay the same”, [64]) where the forecast is always equal to the last known data point. The 583 

persistence model is also known in the forecasting literature as the naive model or the RandomWalk (a 584 

mathematical formalization of a path that consists of a succession of random steps). The solar 585 

irradiance has a deterministic component due to the geometrical path of the sun. This characteristic 586 

may be added as a constraint to the simplest form of persistence in considering as an example, the 587 

measured value of the previous day or the previous hour at the same time as a forecast value. Other 588 

common reference forecasts include those based on climate constants and simple autoregressive 589 

methods. Such comparison with referenced NWP model is shown in Figure 5. Generally, after 1 h the 590 

forecast is better than persistence. For forecast horizons of more than two days, climate averages show 591 

lower errors and should be preferred.  592 

 593 

 594 

Figure 5: Relative RMSE of forecasts(persistence, auto regression, and scaled persistence) and of 595 

reference models depending on the forecast horizon [18] 596 
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Classically, a comparison of performance is performed with a reference model and to do it, a skill 597 

factor is used. The skill factor or skill score defines the difference between the forecast and the 598 

reference forecast normalized by the difference between a perfect and the reference forecast [18]: 599 

reference

forecatd

referencecastperfectfoe

referenceforecasted

MSE

MSE

MetricMetric

MetricMetric
SkillScore 




 1       (13) 600 

Its value thus ranges between 1 (perfect forecast) and 0 (reference forecast). A negative value indicates 601 

a performance which is even worse compared to the reference. Skill scores may be applied not only 602 

for comparison with a simple reference model but also for inter-comparisons of different forecasting 603 

approaches (improvement scores). As an example, Bacher et al. [65] reported an improvement in 604 

RMSE by 36% with respect to persistence, then the RMSE skill score with respect to persistence was 605 

equal to 0.36. Benchmarking can also be used to identify conditions under which forecasts perform 606 

relatively well. Numerous benchmarking were realized in US [17], Canada and European countries [8] 607 

and in Italy [62]. Note that solar forecasting methods in literature go beyond point forecasts only. 608 

Probabilistic forecasts are also widely used and are often more practical solutions to solar energy 609 

needs. The evaluation of probabilistic/prediction interval forecasts is different and metrics used are not 610 

limited to the presented one (see use of prediction intervals [66,67]). 611 

 612 

4. Machine learning forecasters’ comparison 613 

 614 

Before presenting the results related to the machine learning method in order to predict the global 615 

radiation, Figure 6 shows the number of times the term ANN, machine learning and SVM/SVR are 616 

referenced in the five main journals of solar energy prediction (Solar Energy, Energy, Applied Energy, 617 

Renewable Energy and Energy Conversion and Management). 618 

 619 
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Figure 6: Number of time the ANN, machine learning and SVM terms have been used in the original 620 

articles 621 

 622 

All three terms are more and more used in literature. It can be seen the ANN is the mostly used 623 

method in global radiation forecasting.  624 

 625 

4.1. The ANN case 626 

 627 

Reviews of this kind of prediction methods are presented in [28, 47]; the interested reader can find 628 

more information in these papers. Neural networks have been studied on many parts of the world and 629 

researchers have shown the ability of these techniques to accurately predict the time series of 630 

meteorological data. It is essential to distinguish between two types of studies; modeling with 631 

multivariate regression and time series prediction. Indeed, MLP are quite regularly used for their 632 

property of "universal approximation", capable of non-linear regression. In 1999, for the first time an 633 

author presented the prediction of global solar radiation time series via MLP. Kemmoku [69] uses a 634 

method based on MLP to predict the irradiation for the next day. The results show a prediction error 635 

(MAPE) of 18.5% in summer and 21.8% in winter. From all the articles related to ANN [28, 47], the 636 

errors associated with predictions (monthly, daily, hourly and minute) are between 5% and 15%. In 637 

Mellit and Kalogirou review article [68], can be seen that 79% of Artificial Intelligence (AI) methods 638 

used in weather prediction data are based on a connectionist approach (ANN). The use of fuzzy logic 639 

(5%), Adaptive neuro fuzzy inference system (ANFIS) account for 5% of the papers, networks 640 

coupling wavelet decomposition and ANN for 8% and mix ANN/ Markov chain for a small 3%. 641 

Summing up the use of ANN, especially the MLP represents a large majority of research works. This 642 

is the most commonly used technique. Other methods are used only sporadically. According to 643 

published literature, the parameters that influence the prediction are many, so it is difficult to adopt the 644 

results from other studies. Taking into account this fact, it may be interesting to test methods or 645 

parameters even though they have not necessarily been proven in other studies. Based on what is said 646 

above, all parameters inherent to the MLP or ARMA method must be studied for each tested site. 647 

Even if MLP seems better than ARMA, in a few cases the reverse is presented. It is in this context that 648 

other machine learning methods have been studied. Note that forecast performance in terms of 649 

statistical metrics (RMSE, forecast skills) depend not only on the weather conditions (variability) but 650 

also on the forecast horizons. 651 

 652 
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4.2. Single machine learning method 653 

 654 

Table 3 shows the results of machine learning methods used in global solar radiation prediction, direct 655 

normal irradiance and diffuse irradiance. A lot of papers are not cited here. The interested reader can 656 

see some well written review papers related to this topic [26, 47, 49]. 657 

Table 3. List of representative papers related to the global solar radiation forecasting using single 658 
machine learning methods 659 

 660 

In this list, it can be seen that papers using SVR, ANN, k-NN, regression tree, boosting, bagging or 661 

random forests give systematically better results than classical regression methods. ANN and SVM 662 

give similar results in term of prediction, but it can be concluded that SVM is more easy to use than 663 

ANN; the optimization step is automatic while it is very complex in the ANN case. Therefore, it is 664 

References Location Horizon Evaluation 
criteria 

Dataset Results 

[71] Canada 18 hours NA exogenous Regression tree>linear regression 

[20] Greece 1 hour NA endogenous ANN=AR 

[72] Argentina 1 day NA  Generalized regression is useful 

[73] China NA NA Endogenous 
and influents 
factors 

Regression tree > ANN > linear regression 

[27] France D+1 nRMSE=21% exogenous ANN>AR>k-NN>Bayesian>Markov 

[74] USA 24 hours nRMSE=17.7
% 

exogenous ANN>persistence 

[75] Spain 1 day NA exogenous ANN=generalized regression 

[76] Benchmark various MAPE=18.95
% 

exogenous MIMO-ACFLIN strategy (lazy learning) is the 
winner 

[77] Turkey 10 min nRMSE=18% exogenous k-NN>ANN 

[78] Italia 1 hour NA exogenous SVM>ANN>k-NN>persistence 

[79] Japan 1 hour NA exogenous Regression tree interesting to select variables 

[80] Nigeria NA nRMSE=24% exogenous ANN=regression tree 

[81] Spain 1 day NA exogenous SVM>peristence 

[59] Australia 1 min MAPE=38% exogenous Random forest>linear regression 

[82] Canada 1 hour NA exogenous SVM>NWP 

[83] Macao 1 day MAPE=11.8
% 

exogenous ANN>SVM>k-NN>linear regression 

[84] Spain 1 day NA exogenous Extreme machine learning is useful 

[85] Benchmark 10 min nRMSE=10% exogenous Random Forest>SVM>generalized 
regression>boosting>bagging>persistence 

[56] Spain 24 hours nMAE=3.73% 
- 9.45% 

exogenous Quantile regression forests coupled with NWP 
give a good accuracy for PV prediction 

[86] Germany 1 hour nRMSE=6.2% exogenous SVR>k-NN 

[18] French 
islands 

1 hour nRMSE=19.6
% 

exogenous ANN=Gaussian=SVM>persistence 

[87] Italia 1 hour NA exogenous SVR>ANN>AR>k-NN>persistence 

[88] benchmark 1 hour nRMSE=13% exogenous Regression tree>NWP 

[43] USA 30 min Skill over 
persistence 
=23.4% 

Exogenous k-NN>persistence 
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maybe preferable to use SVM rather than ANN. All the methods related to the use of regression trees 665 

or similar methods (boosting, bagging or random forest) are rarely used but give excellent results. It is 666 

not easy at this stage to draw a conclusion, but in the next 5 years, it is probable that these methods 667 

may become the reference in term of irradiation prediction. An alternative to all the previous methods 668 

is certainly k-NN, but some more publications are necessary to conclude that it is a good forecaster. 669 

Actually, it is very difficult to propose a ranking of machine learning methods although SVR, 670 

regression trees, boosting, bagging and random forest seem the most efficient. To overcome this 671 

problem of ranking, some authors do not hesitate to combine single predictors. 672 

 673 

4.3. Ensemble of predictors 674 

 675 

There are a lot of solutions which combine predictors as it is shown in Table 4. In these papers we can 676 

see that often it is ANN who is used in order to construct ensemble of predictors (>70% of the cases).  677 

 678 

Table 4. list of representative papers related to the global radiation forecasting combining machine 679 
learning methods 680 

References Location Horizon Evaluation 
criteria 

Dataset Results 

[41] Japan 1 day nMAE=1.75% exogenous {regression tree-ANN}>ANN 

[89] China 1 hour R²=0.72 exogenous {ANN-wavelet}>ANN 

[16] USA 1 hour nRMSE=26% endogenous {ARMA}>ANN 

[90] Japan 1 hour MAPE=4% exogenous {ANN}>ANN 

[91] Spain 1 hour NA exogenous {SVM-k-NN}>climatology 

[92] USA 1 hour NA exogenous Bayesian>{SVM-ANN} 

[93] Australia 6 hour NA exogenous {ANN-least median square}>least median 
square>ANN>SVM 

[94] Italia 10 min nRMSE=9.4% exogenous {SARIMA-SVM}>SARIMA>SVM 

[95] USA 10 min Skill over 
persistence=20
% 

exogenous {GA-ANN}>ANN 

[96] Czech rep 10 min NA exogenous {ANN-SVM}>SVM>ANN 

[24] USA 1 day NA exogenous {ANN-linear regression}>ANN>linear 
regression 

[97] USA 1 day NA exogenous {LSR-ANN}>regularized LSR=ordinary LSR 

[61] UAE 10 min rRMSE=9.1% exogenous {ANNs}>ANN 

[98] USA 30 min NA exogenous {PCA-gaussian process}>NWP 

[99] Singapore NA NA endogenous {GA-kmean-ANN}>ANN>ARMA 

[100] Malaysia 1 hour nRMSE=5% exogenous {GA-SVM-ANN-
ARIMA}>SVM>ANN>ARIMA 

[101] Taiwan 1 day nMAE=3%  {ANN-SVM}>SVM>ANN 

[102] USA 10 min Skill over 
persistence=6% 

exogenous {GA-ANN}>persistence 

[103] Italia 1 day MAPE=6% exogenous SVM>linear model 

[104] USA 1 hour nRMSE=22% exogenous {ANN-SVM}>ARMA 
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 681 

As it can be seen, systematically the ensemble of predictors gives better results than single predictors 682 

but again the best methodology of hybridization is not really defined. A lot of more works are 683 

necessary in order to propose a robust method, or maybe to prove that all the methods are equivalent, 684 

but certainly this cannot be done with the limited cases presented here. 685 

 686 

5. Conclusions and outlook 687 

 688 

As shown in the present paper, many methods and types of methods are available. There are a lot of 689 

methods to estimate the solar radiation, some are often used (ANN, ARIMA, naive methods), others 690 

begin to be used (SVM, SVR, k-mean) more frequently and other are rarely used (boosting, regression 691 

tree, random forest, etc.). In some cases, one is the best and in others it is the reverse. As a conclusion, 692 

it can be said that the ANN and ARIMA methods are equivalent in term of quality of prediction in 693 

certain variability conditions, but the flexibility of ANN as universal nonlinear approximation makes 694 

them more preferable than classical ARIMA. Generally, the accuracy of these methods depends on the 695 

quality of the training data. The three methods that should be generally used in the next years are the 696 

SVM, regression trees and random forests, as the results given are very promising and some 697 

interesting studies will certainly be produced the next few years. Actually, considering the published 698 

papers, these methods yield similar error statistics. The implementation of the methods may have more 699 

to do with the errors reported in the literature than the methods themselves. For example, when the 700 

autocorrelation of the error is reduced white noise for the same inputs, SVM, SVR, regression trees or 701 

random forests perform very similarly, with no statistical differences between them. The second point 702 

which can be seen from Table 4 is the fact that the predictor ensemble methodology is always better 703 

than simple predictors. This shows the way that the problem must be studied whereas the simple 704 

forecast methodology using only one stochastic method (above all ANN and ARIMA) should tend to 705 

disappear. In the present paper the deep learning, which is a branch of machine learning based on a set 706 

of algorithms that attempt to model high-level abstractions in data by using model architecture, with 707 

complex structures or otherwise, composed of multiple non-linear transformations, are not taken into 708 

account. This research area is very recent and there is not enough experience, but in the future this 709 

kind of methodology may outperform conventional methods, as is already the case in other predicting 710 

domains (air quality, wind, economy, etc.). As a consequence, forecasts reached through various 711 

methods can be calculated in order to satisfy the various needs. The question then arises how they will 712 

be put together. The answer is clearly not trivial because the various resulting forecasts show 713 

[105] USA 1 hour NA exogenous {SVR}>SVR>{SVR-PCA}>ARIMA>linear 
regression 
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differences on many points. Moreover, some of them will be associated with confidence intervals 714 

which should also be merged. 715 
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