Mixture Kriging on granular data - FAYOL / PIESO : Performance Industrielle et Environnementale des Systèmes et des Organisations
Pré-Publication, Document De Travail Année : 2022

Mixture Kriging on granular data

Krigeage de distributions de mélanges pour des données granulaires

Résumé

This paper deals with three related problems in a geostatistical context. First, some data are available for given areas of the space rather than for some point locations which creates problems of multiscale areal data. Second, some uncertainties rely both on the input locations and on measured quantities at these locations, involving uncertainty propagation problems. Third, multidimensional outputs can be observed, with sometimes missing data. These three problems are addressed simultaneously here by considering mixtures of multivariate random fields and by adapting standard Kriging methodology to this context. While the usual Gaussian setting is lost, we show that conditional mean, variance and covariance can be derived from this specific setting. Case studies are presented both with simulated data and real data. In particular, we discuss the question of information loss in learning buildings energy efficiency.
Fichier principal
Vignette du fichier
MixtureKriging_V35.pdf (854.72 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03276127 , version 1 (01-07-2021)
hal-03276127 , version 2 (25-08-2022)
hal-03276127 , version 3 (07-03-2023)
hal-03276127 , version 4 (17-01-2024)

Identifiants

  • HAL Id : hal-03276127 , version 2

Citer

Marc Grossouvre, Didier Rullière. Mixture Kriging on granular data. 2022. ⟨hal-03276127v2⟩
950 Consultations
359 Téléchargements

Partager

More