Mixture Kriging on granular data - FAYOL / PIESO : Performance Industrielle et Environnementale des Systèmes et des Organisations
Pré-Publication, Document De Travail Année : 2021

Mixture Kriging on granular data

Résumé

This paper deals with three related problems in a geostatistical context. First, some data are available for given areas of the space, rather than for some specic locations, which creates specic problems of multiscale areal data. Second, some uncertainties rely both on the input locations and on measured quantities at these locations, which creates specic uncertainty propagation problems. Third, multidimensional outputs can be observed, with sometimes missing data. These three problems are addressed simultaneously here by considering mixtures of multivariate random elds, and by adapting standard Kriging methodology to this context. While the usual Gaussian setting is lost, we show that conditional mean, variance and covariances can be derived from this specic setting. A numerical illustration on simulated data is given.
Fichier principal
Vignette du fichier
MixtureKriging_HALv1.pdf (675.04 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03276127 , version 1 (01-07-2021)
hal-03276127 , version 2 (25-08-2022)
hal-03276127 , version 3 (07-03-2023)
hal-03276127 , version 4 (17-01-2024)

Identifiants

  • HAL Id : hal-03276127 , version 1

Citer

Marc Grossouvre, Didier Rullière. Mixture Kriging on granular data. 2021. ⟨hal-03276127v1⟩
912 Consultations
345 Téléchargements

Partager

More