Communication Dans Un Congrès Année : 2020

Joint Bayesian Hyperspectral Unmixing for change detection

Résumé

Spectral unmixing allows to extract endmembers and estimate their proportions in hyperspectral data. Each observed pixel is considered to be a linear combination of several endmembers spectra. Based on a novel hierarchical Bayesian model, change detection into hyperspectral images is achieved by unmixing. A Gibbs sampler is proposed to overcome the complexity of integrating the resulting posterior distribution. The performance of the proposed Bayesian change detection method is evaluated on real data. It provides binary detection with a precision rate up to 98.90%.
Fichier principal
Vignette du fichier
gharbi_26413.pdf (268.11 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02942312 , version 1 (17-09-2020)

Identifiants

Citer

Walma Gharbi, Lotfi Chaari, Amel Benazza-Benyahia. Joint Bayesian Hyperspectral Unmixing for change detection. Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS 2020), Mar 2020, Tunis, Tunisia. pp.37-40, ⟨10.1109/M2GARSS47143.2020.9105275⟩. ⟨hal-02942312⟩
239 Consultations
107 Téléchargements

Altmetric

Partager

More