Linear rigidity of stationary stochastic processes - Analyse fonctionnelle
Pré-Publication, Document De Travail Année : 2016

Linear rigidity of stationary stochastic processes

Résumé

We consider stationary stochastic processes X n , n ∈ Z such that X 0 lies in the closed linear span of X n , n = 0; following Ghosh and Peres, we call such processes linearly rigid. Using a criterion of Kolmogorov, we show that it suffices, for a stationary stochastic process to be rigid, that the spectral density vanish at zero and belong to the Zygmund class Λ * (1). We next give sufficient condition for stationary determinantal point processes on Z and on R to be rigid. Finally, we show that the determinantal point process on R 2 induced by a tensor square of Dyson sine-kernels is not linearly rigid.
Fichier principal
Vignette du fichier
Linear-rigid.pdf (137.3 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01256215 , version 1 (14-01-2016)

Identifiants

  • HAL Id : hal-01256215 , version 1

Citer

Alexander I. Bufetov, Yoann Dabrowski, Yanqi Qiu. Linear rigidity of stationary stochastic processes. 2016. ⟨hal-01256215⟩
1008 Consultations
380 Téléchargements

Partager

More